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Abstract. A variational method is studied based on the minimum of energy variance. The method is tested
on exactly soluble problems in quantum mechanics, and is shown to be a useful tool whenever the properties
of states are more relevant than the eigenvalues. In quantum field theory the method provides a consistent
second-order extension to the Gaussian effective potential.
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1 Introduction

In 1873 Lord Rayleigh [1] described a variational method
for calculating the frequencies of mechanical systems. Since
then the Rayleigh–Ritz method has been an important
tool for the approximate solution of physical problems. In
quantum mechanics the method has proven very useful,
and provides an upper bound for the ground-state energy,
as the exact eigenstate of the Hamiltonian H yields the
lowest energy expectation value.

More generally, the exact eigenstates are known to be
stationary points for the expectation value of H. That is
not a special property of H: for any real function f , the
expectation value of the operator f(H) can be proven to be
stationary at the exact eigenstates of H. Thus, when the
search for approximate eigenstates of H is the main issue,
the expectation value of any function f(H) can be used as
a functional of the trial eigenstate. In general the result is
different and depends on the choice of the function f unless
the trial state is the exact eigenstate of H. This dependence
is a measure of the accuracy of the approximate eigenstates,
and can be used as a variational method of calculation
whenever the description of states is more important than
the determination of the corresponding energies.

In this paper the variance of H is shown to be the
natural choice for a measure of the dependence on f . The
resulting variational method, which we call minimal energy
variance (MEV), is not novel, having been used since 1955
in numerical calculations [2]. The method has not been very
popular, as the average of the square H2 is required, and
only recently have some of its interesting properties been
shown in numerical quantum Monte Carlo calculations [3,
4].

We discuss in some detail the properties of MEV and
show that it can be regarded as a useful complementary
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tool for the properties of the eigenstates more than a sub-
stitute for the usual variational method. In that respect
the MEV turns out to be of interest even for analytical
calculations despite the larger amount of work required for
its evaluation, which is comparable to a second-order per-
turbative approximation. We show that MEV is at least
as general as the standard variational method, and that it
can be relevant for the variational treatment of quantum
field theories such as the scalar theory.

Webegin bydefining theMEVanddiscussing its general
properties in Sect. 2. In fact MEV is usually described as a
numerical tool in the framework of quantum Monte Carlo
calculations, despite its generality. In Sect. 3 the method
is illustrated by comparison of some results for exactly
solvable problems in quantum mechanics (the harmonic
oscillator and the hydrogen atom). In Sect. 4 MEV is shown
tobe relevant for the variational treatment of a scalar theory
to get a consistent second-order extension of the Gaussian
effective potential.

2 Definition and properties

Denoting by |Ψ〉 a generic state in the Hilbert space, the
expectation value of f(H) reads

〈f〉 =
〈Ψ |f(H)|Ψ〉

〈Ψ |Ψ〉 (1)

and the stationary condition is

δ〈f〉
δ|Ψ〉 =

〈Ψ |f(H)
〈Ψ |Ψ〉 − 〈Ψ |f(H)|Ψ〉

〈Ψ |Ψ〉2 〈Ψ | = 0 , (2)

which is satisfied if

f(H)|Ψ〉 = 〈f〉|Ψ〉 . (3)
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The solutions of the eigenvalue problem are the stationary
points of 〈f〉. Usually (with some special exceptions [5])
these solutions are the eigenstates ofH. Thus,whatever f is,
the stationary points of 〈f〉 yield approximate eigenstates of
H. However the stationary point does depend on the choice
of the function f if the generic trial state |Ψ〉 belongs to a
subspace which does not contain the exact eigenstate. For
instance it is well known that if the trial state |Ψ〉 is not an
exact eigenstate then in general 〈Hn〉 �= 〈H〉n. Thus there
is no reason why the simple choice f(H) = H should be the
best choice. Actually any different choice for the function
f would give a different weighting of the trial state in the
expectation value. While the usual energy variation seems
to be reasonable for the approximate evaluation of the
ground-state energy, this might not be the best choice for
describing the properties of the eigenstates.

We assume that the trial state |Ψ〉 is closer to the exact
eigenstate when its sensitivity to f is lower. In other words,
we define a distance D between the trial state and the exact
eigenstate according to

D = 〈f(H)〉 − f(〈H〉) . (4)

Thus any choice of the function f would provide a dif-
ferent variational method as we know that D = 0 for any
exact eigenstate. The most simple nontrivial choice for f is
f(H) = H2 and this yields the variance σ2 = 〈H2〉− 〈H〉2
as a viable candidate for the distance D.

A formal proof that the exact eigenstates of H are
stationary points of σ2 is trivial:

〈Ψ |Ψ〉 δσ2

δ〈Ψ | =
[
H2|Ψ〉 − 〈H2〉|Ψ〉] − 2〈H〉 [H|Ψ〉 − 〈H〉|Ψ〉]

(5)
and the right hand-side vanishes if |Ψ〉 is an eigenvector of
H. Moreover σ2 ≥ 0 and it vanishes for any exact eigen-
vector, so that σ2 has a minimum at any eigenvector (not
just the ground state). In practice, whenever a trial state is
close enough to an eigenstate, the variance σ2 is expected
to show a local minimum. The value of σ2 at the mini-
mum is a measure of the accuracy of the corresponding
approximate eigenstate. Moreover the minimum of σ2 ac-
quires a deeper physical meaning if related to the dynamical
properties of the state. The vanishing of σ for eigenstates
can be seen as a consequence of the time delocalization
of the stationary states. According to the Heisenberg re-
lations ∆t ≈ �/σ, a smaller energy variance allows for a
longer survival of the approximate eigenstate. Thus MEV
yields approximate eigenstates that best resemble the exact
ones in their dynamical evolution. In that respect MEV
seems to be a complementary tool for the properties of
the eigenstates more than a substitute for the usual varia-
tional method, which always gives the best approximation
for the eigenvalues.

3 Analytical tests

The method can be tested on exactly solvable problems:
the hydrogen atom and the harmonic oscillator.

3.1 The hydrogen atom

In atomic units the Hamiltonian of the hydrogen atom is

H = − 1
2

∇2 − 1
r

. (6)

We choose a two-parameter trial state

〈r|Ψ〉 = N(1 − αr)e−βr . (7)

This is the exact ground state for α = 0, β = 1, while it
is the first excited state for α = β = 0.5. The expectation
values of H and H2 are easily evaluated

〈H〉 = [T1(α, β) − V1(α, β)] / [2D(α, β)] , (8)

〈H2〉 =
T2(α, β) + V2(α, β) − S(α, β)

4D(α, β)
(9)

where T1 = β2(α2 − αβ + β2), V1 = β(3α2 − 4αβ + 2β2),
T2 = β4(3α2 + 5αβ + 5β2), V2 = 4β2(α2 − 2αβ + 2β2),
S = 2β3(α2+6β2) and D = (3α2−3αβ+β2). The variance
σ2 has two local minima for (α, β) equal to (0, 1) and
(0.5, 0.5), while the energy 〈H〉 only has a saddle point at
(0.5, 0.5). For α = β the two methods yield the same result:
a minimum for α = β = 0.5 where the trial state becomes
the first excited state. For α = −β, the trial state is quite
bad: its behaviour for r → 0 is

〈r|Ψ〉 ∼ N(1 − 1
2

β2r2 + O(r3)) ∼ Ne− 1
2 β2r2

. (10)

The variance σ2 is quite sensitive to the shape of the wave-
function, and in this case it fails to show any minimum,
while the energy 〈H〉 still has a minimum for β = 1.5. It
is instructive to study the behaviour of σ2 for a constant
ratio α/β = k. The trial state |Ψ〉 may get very close to an
exact eigenstate if k ≈ 0 or k ≈ 1. In Fig. 1 the variance
σ2 is shown for several values of k. We observe a crossover
from a pronounced minimum at β = 0.5 (for k = 1) to a
pronounced minimum at β = 1 (for k = 0). As k becomes
negative and moves away from 0, the minimum value of
σ2 raises, and eventually the minimum disappears as the
trial state worsens. Conversely as k approaches 0, a min-
imum around β = 1 deepens until σ2 vanishes for k = 0.
The minimum at β = 0 is always present as in that limit
the trial wavefunction becomes a constant that is an exact
unbounded eigenstate with a vanishing energy. Thus at
variance with the standard variational method, MEV may
be used for approximating excited states without having
to insert orthogonality conditions: a local minimum ap-
pears whenever the trial state is close enough to an exact
eigenstate. Moreover the sensitivity of σ2 discards bad ap-
proximations as the minimum disappears for the worse trial
states. Whenever a minimum is present its value is by itself
a measure of the accuracy of the state as σ2 = 0 for the
exact eigenstate.



F. Siringo, L. Marotta: A variational method from the variance of energy 295

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.5  1  1.5  2

σ2

β

Fig. 1. The variance σ2 for approximate eigenstates of the
hydrogen atom. The trial wavefunction is defined according
to (7) with α = kβ and k = 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, -0.2,
-0.4, -0.6, -0.8. The minimum moves from left to right when k
decreases, and disappears at k ≈ −0.7

3.2 The harmonic oscillator

Other insights on the method come from the study of the
simple harmonic oscillator. Let us consider the Hamiltonian

H =
p2

2
+

1
2

ω2
0x2 (11)

which describes an oscillator whose frequency is ω0. Let
us denote by |n, ω0〉 the exact eigenstates with energies
En = �ω0(n + 1/2). As a trial state we may take a linear
combination of the lower-energy eigenstates of a generic
oscillator whose frequency is ω:

|Ψ〉 = |0, ω〉 + α|1, ω〉 (12)

where both α and ω are variational parameters. The trial
state is the exact ground state of H for α = 0 and ω = ω0,
while it gives the first excited state for α → ∞ and ω = ω0.
The calculation of the expectation values of H and H2 is
trivial: in units of �ω0/2 we may express them as

〈H〉 = cosh(lnx)f3(α) , (13)

〈H2〉 = 3 sinh2(lnx)f5(α) + f9(α) (14)

where x = ω0/ω and fn(α) = (1 + nα2)/(1 + α2) is a
smooth increasing function of α ranging from 1 (at α = 0)
to n (for α → ∞).

The variance follows as

σ2 =
1

cosh2(lnα)
+ g(α) sinh2(ln x) (15)

where g(α) = 2(3α4 + 6α2 + 1)/(1 + α2)2 is a smooth
increasing function of α ranging from 2 (at α = 0) to 6 (for
α → ∞).
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Fig. 2. The variance σ2 for approximate eigenstates of the
harmonic oscillator. The trial state is defined according to (12)
with α ranging from α = 0 (ground state) to α → ∞ (first
excited state) while ω0/ω = x is taken to be x = 1 (lower curve),
x = 1.25 and x = 1.5 (upper curve). Approaching the exact
eigenstates (x → 1) the minima decrease and eventually vanish

First of all we mention that both methods must predict
the exact values of α even for x �= 1 (i.e. ω �= ω0): in fact at
any ω the states |0, ω〉 and |1, ω〉 have different symmetry
properties, and thus the trial state can be an eigenstate of
parity only for α = 0 (even) or α → ∞ (odd). Actually we
may observe that α = 0 and α → ∞ are stationary points
of 〈H〉 and σ2 for any choice of the parameter x. This is
evident for 〈H〉 as in (13) the contributions of α and x are
in different factors. We always get a minimum for α = 0
(ground state), while the limit α → ∞ is a maximum (first
excited state). Whatever α is, 〈H〉 has a unique stationary
point for x = 1 where the hyperbolic cosine has a minimum.
From (15) we see that the variance follows the same path:
for any choice of α a minimum occurs at x = 1 where
the hyperbolic sine vanishes. If we set x �= 1, then we can
explore the dependence of the variance on α. As we move
from x = 1 (i.e. ω = ω0), the trial state worsens. We still
find two minima at α = 0 and α → ∞, but the minimum
value of the variance increases as the state gets worse. In
Fig. 2 the variance is shown for some values of x. From (15)
we see that, at the minima, σ2 = g(α) sinh2(lnx) so that we
get a larger variance σ2 = 6 sinh2(lnx) at the first excited
state (α → ∞), and a smaller variance σ2 = 2 sinh2(lnx)
at the ground state (α = 0). Thus the trial state is a better
approximation for the ground state than it is for the first
excited state.

4 Scalar theory

In quantum field theory the properties of vacuum are more
relevant than its energy, which is not finite anyway. For
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instance the symmetry-breaking mechanism and the mass
of the Higgs boson depend on the structure of the true vac-
uum. Thus we argue that the use of MEV could give rise to
new insights into the ground-state properties of relevant
field theories such as the scalar theory. In fact we show
that MEV may be used for improving the Gaussian effec-
tive potential (GEP), a useful variational tool which has
been discussed by several authors since 1974 [6–13]. The
GEP has many merits, and has been successfully applied
to physical problems ranging from electro–weak symmetry
breaking [14] and scalar theories [13], to superconductivity
in bulk materials [15] and films [16]. A second-order exten-
sion of the Gaussian approximation would be desirable for a
better understanding of the symmetry-breaking transition.
In fact the GEP is sometimes known to predict a first-order
transition even when the phase change should be continu-
ous. Moreover, the GEP fails to show a minimum for some
ranges of parameters. Attempts to improve the GEP have
not been so successful: the post-Gaussian effective poten-
tial (PGEP) discussed by Stancu and Stevenson [17] fails
to reach a minimum for any finite value of the variational
parameter, which is fixed by the vanishing of the second
derivative [18]. A way out has been studied by Tedesco and
Cea [19], who take the variational parameter fixed at the
first-order value. In this paper we point out that the min-
imum of variance would be a viable tool for determining
the variational parameter, and we show that this choice
allows a useful second-order extension of the GEP.

The GEP can be seen as an improved first-order pertur-
bative approximation. Let us decompose the Hamiltonian
into two parts as H = HΩ + VΩ , where HΩ is any solv-
able Hamiltonian that depends on the parameter Ω, while
VΩ = H − HΩ . The decomposition itself depends on the
parameter Ω. The ground state of HΩ satisfies the eigen-
value equation

HΩ |ΨΩ〉 = EΩ |ΨΩ〉 . (16)

Then the first-order perturbative approximation for the
lower eigenvalue of H follows

E = EΩ + 〈ΨΩ |VΩ |ΨΩ〉 . (17)

The minimum of E can be found by a variation of the
parameter Ω, and at the minimum point Ω = Ω0 we get
the best decomposition of H (in the sense that the first-
order perturbative approximation yields the lower energy).
However E is the expectation value of the full Hamiltonian
H, and the method is a genuine variational method: the
trial state is the eigenstate |ΨΩ〉, which depends on the
parameter Ω according to (16). In the GEP HΩ is the
Hamiltonian of a free scalar field whose mass is Ω, and its
ground state |ΨΩ〉 is a Gaussian functional of fields.

The PGEP [17] is equivalent to the second-order per-
turbative evaluation of the vacuum ground-state energy
(effective potential). It arises from the sum of all the second-
order connected one-particle irreducible diagrams without
external legs. It can be proven to be equivalent to the cu-
mulant expansion discussed by Kleinert [20], and then the
second-order correction δE(2) is basically equivalent to the

variance up to a sign

δE(2) = 〈VΩ〉2 − 〈V 2
Ω〉 = 〈H〉2 − 〈H2〉 = −σ2 . (18)

Thus the minimum of the variance is equivalent to the min-
imum absolute value of the second-order correction. Ac-
cording to the asymptotic convergence of the perturbative
expansion we know that a minimum of the second-order
correction is equivalent to a minimum of the error that
we expect in the first-order expansion. From this point
of view the minimum of the variance singles out the best
perturbative expansion.

The explicit expression for the second-order effective
potential V (2) has been reported in [17] as a function of
the vacuum expectation value of the field 〈φ〉 = ϕ for a
scalar theory whose action reads

S[φ] =
∫

ddx

[
1
2

φ(x)
(−∂2 + m2) φ(x) + λφ4(x)

]
(19)

in a d-dimensional Euclidean space. The second-order ef-
fective potential is given by

V (2) = V (1) + δE(2) (20)

where V (1) is the first-order GEP

V (1) = I1(Ω) +
1
2

m2ϕ2 + λϕ4

+
1
2

I0(Ω)
[
m2 − Ω2 + 12λϕ2 + 6λI0(Ω)

]
(21)

and the second-order correction reads

δE(2) = −
{

1
8

I(2)(Ω)
[
m2 − Ω2 + 12λϕ2 + 12λI0(Ω)

]2

+ 8λ2ϕ2I(3)(Ω) +
1
2

λ2I(4)(Ω)
}

. (22)

Here I(n)(Ω) and In(Ω) are the integrals defined according
to [17]

I1(Ω) =
1
2

∫
ddp

(2π)d
ln(p2 + Ω2) , (23)

I0(Ω) =
∫

ddp

(2π)d

1
p2 + Ω2 , (24)

I(n)(Ω) = n!
∫

ddx [G(x)]n (25)

where G(x) is the free-particle Green function

G(x) =
∫

ddp

(2π)d

eipx

(p2 + Ω2)
. (26)

Most of these integrals are diverging and must be reg-
ularized. The search for the minimum of V (2) yields a gap
equation for the free field mass Ω. A numerical analysis
of this gap equation shows that there is no minimum for
the second-order effective potential, while the second-order
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Fig. 3. The second-order correction (the variance, up to a sign)
for the effective potential in λΦ4 scalar theory. The values for
the parameters are: d = 3, m2/Λ2 = −0.06 and λ/Λ = 0.1,
ϕ/

√
Λ = 0.1. Note that it is unbounded, so that the total ef-

fective potential cannot have a minimum whatever value the
variational parameter Ω takes; as shown in the inset graph (an
enlargement with σ2 unit scaled by a factor 104), however, it
has, by itself, a pronounced maximum, making MEV a reason-
able alternative to PGEP, where the vanishing of the second
derivative of V (2) is required

correction by itself (the variance) has a pronounced mini-
mum for a broad range of the parameters.

The second-order correction has been evaluated as a
function of the bare parameters m and λ, and the varia-
tional parameter Ω. An energy cutoff Λ has been inserted
to regularize all the diverging integrals. In Fig. 3 δE(2)

versus Ω is reported, for d = 3 and for the set of parame-
ters m2/Λ2 = −0.06, λ/Λ = 0.1, ϕ/

√
Λ = 0.1. According

to (18) it turns out to be negative; moreover, as is clear
from the figure, the second-order correction, while having
a maximum when its absolute value is minimum (which
is the minimum of the variance: see the inset in Fig. 3), is
not bounded: this explains why the total effective potential
fails to reach a minimum for any choice of the free mass Ω.

The minimum of σ2 yields a best value Ω = Ω0 for each
value of the shift ϕ. Insertion in V (2) gives our second-order
effective potential. This should be compared to the PGEP
of [17] where the best Ω is obtained by the vanishing of
the second derivative of V (2) [18].

In Fig. 4 our second-order effective potential is reported
(the same d = 3 and bare parameter values as those in Fig. 3
were used). For this set the system is close to its transition
point. For comparison in the same figure we also show the
standard first-order GEP, and the PGEP evaluated accord-
ing to [17]. For d = 3 the system may be regarded as a static
statistical model for a phase transition in three-dimensional
space (Ginzburg–Landau action). The predictions of this
model can be tested by comparison with the experimental
data on the phase transition of different systems like su-
perfluids and superconductors. Unfortunately the simple
GEP predicts a first-order transition in this case (while
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Fig. 4. The second-order effective potential evaluated by the
method of minimum variance (solid line) for d = 3, m2/Λ2 =
−0.06 and λ/Λ = 0.1. For comparison the PGEP (dashed line)
and the simple first-order GEP (dotted line) are reported. The
effective potential is scaled by a factor 105, while the field shift
ϕ is in units of

√
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Fig. 5. An enlargement (the effective potential is scaled by
a factor 109) of the ϕ = 0 region in Fig. 4; the GEP (dotted
line) predicts a first-order transition with the point at ϕ = 0
being a local minimum; instead, the MEV (solid line) predicts
a continuous transition (as it should be for superconductivity),
thus providing a consistent variational second-order extension
of the GEP

the transition is known to be continuous). In Fig. 5 an en-
largement of the ϕ = 0 area makes these reasonings more
evident: the GEP (dotted line) is an increasing function up
to a maximum (the point ϕ = 0 is a local minimum). Ac-
tually the phase transition occurs when the true minimum
rises more than the local minimum (first-order transition).
Our second-order potential (solid line), evaluated by MEV,
predicts a continuous transition (as it should be), with the
point at ϕ = 0 always being a local maximum in the broken
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phase. Thus the method provides a consistent second-order
extension of the GEP while retaining its variational char-
acter.

We conclude that, while MEV has been shown recently
to be a useful tool in numerical quantum Monte Carlo
calculations, its potential has not yet been fully explored.
Whenever the properties of states are more relevant than
the eigenvalues, MEV provides a viable variational method
which canbeused in analytical andfield-theory calculations
as a complementary tool.
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